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Overview

▶ Joyal lifting theorem states that given an inner Kan
fibration, one can fill special outer horns.

▶ One main corollary is that a Right Kan simplicial set
is Kan simplicial.

▶ Our objective is to generalize this result to an
arbitrary category with a Grothendieck pretopology.
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Upshot

Assume Right Kan conditions imply Kan conditions.

Let M
χ−→ ∆1 be a right Kan fibration, between any two

simplicial object in the category (C, T ), then both the end
points χ−1{0} and χ−1{1} are right Kan fibrant and
hence by the assumption ∞-groupoids.
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Joyal Lifting theorem

Theorem
Let p : X → Y be an inner fibration between ∞-categories
and f ∈ X such that p(f) is an isomorphism in Y . Then
TFAE:

▶ f is an isomorphism in X.

▶ For all n ≥ 2, there is a lift for the diagram

Λn
0 X

∆n Y

h

p

where h|∆1{0,1} is f .
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Joyal Lifting theorem

A left outer horn x : Λn
0 → X is called special if x|∆1

{0,1}
is

invertible.

Theorem ([Joy02])

Let X be an ∞-category. Then every special outer horn
x : Λn

0 → X can be filled.

Corollary

An ∞-category X is Kan complex iff its fundamental
category cat(X) is a groupoid.
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Characterization of Kan complex

Theorem (Joyal)

Let X be a simplicial set, the following are equivalent:

1. X is a Kan complex.

2. X → 1 is right fibrant.

3. X → 1 is left fibrant.

Proof(2) =⇒ (1)

X → 1 is right fibration =⇒ X → 1 is conservative
=⇒ cat(X) → cat(1) is conservative =⇒ cat(X) is a
groupoid =⇒ X is Kan.
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Setting

We denote our category (C, T ), where C is an extensive
category and T is a Grothendieck pretopology satisfying
assumptions

▶ All finite products and finite coproducts exists in C.
▶ All idempotents in C split.

▶ the pretopology T is retract stable.

With these assumptions, (C, T ) is called a Good
geometric category.

Assumption ⋆[MZ15]

If X
f−→ Y

g−→ Z are maps such that g ◦ f , and f is a cover,
then g is a cover.



Kan we fill the
outer horns?

Introduction

Joyal Lifting
theorem

General setup

Right Kan
implies Kan

Facing the Face
maps.

10/30

Setting

We denote our category (C, T ), where C is an extensive
category and T is a Grothendieck pretopology satisfying
assumptions

▶ All finite products and finite coproducts exists in C.
▶ All idempotents in C split.

▶ the pretopology T is retract stable.

With these assumptions, (C, T ) is called a Good
geometric category.

Assumption ⋆[MZ15]

If X
f−→ Y

g−→ Z are maps such that g ◦ f , and f is a cover,
then g is a cover.



Kan we fill the
outer horns?

Introduction

Joyal Lifting
theorem

General setup

Right Kan
implies Kan

Facing the Face
maps.

11/30

Examples of Good Geometric categories

The following are examples of Good Geometric categories
which even satisfies assumption ⋆:

▶ Sets with surjective submersions.

▶ Top with maps having global (local) continuous
sections.

▶ Top with proper surjections.

▶ Top with open (or even et́ale) surjections.

▶ Mfldfin with surjective submersions.

▶ MfldBan with surjective submersions.

▶ MfldHil with surjective submersions.
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Kan conditions

On a category C, with Grothendieck pretopology T , we
say map between simplicial objects X → Y satisfies
Kan(n, j)[or Kan!(n, j)] if the natural map below is a
cover[or an isomorphism].

Xn = hom(∆n, X) → hom(Λn
j → ∆n, X → Y )

▶ A simplicial object X is called left(right, or Kan)
fibrant if the map X → 1 satisfies Kan(n, j) for
0 ≤ j < n (0 < j ≤ n, or 0 ≤ j ≤ n)

▶ ∞-groupoids are Kan fibrant.
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Groupoid Bibundle

Following the approach of Lurie, defining correspondence
between simplicial sets, we define

Definition
Let G,H be two ∞- groupoids in (C, T ). A G−H

bibundle is an inner Kan fibration M
χ−→ ∆1 with source

χ−1(0) = G and χ−1(1) = H.

Remark
Since we are dealing with groupoids, we also need certain
extra outer Kan conditions as defined by [Li15]. But with
the added assumption on the cover, Li showed that these
special outer horns can be automatically filled.



Kan we fill the
outer horns?

Introduction

Joyal Lifting
theorem

General setup

Right Kan
implies Kan

Facing the Face
maps.

13/30

Groupoid Bibundle

Following the approach of Lurie, defining correspondence
between simplicial sets, we define

Definition
Let G,H be two ∞- groupoids in (C, T ). A G−H

bibundle is an inner Kan fibration M
χ−→ ∆1 with source

χ−1(0) = G and χ−1(1) = H.

Remark
Since we are dealing with groupoids, we also need certain
extra outer Kan conditions as defined by [Li15]. But with
the added assumption on the cover, Li showed that these
special outer horns can be automatically filled.



Kan we fill the
outer horns?

Introduction

Joyal Lifting
theorem

General setup

Right Kan
implies Kan

Facing the Face
maps.

14/30

Right Kan implies Kan
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Right Kan =⇒ Inverse

Let X be a simplicial object in (C, T ). Assume X is right
Kan, that is X → 1 is right Kan fibration. Then, Any
arrow or 1−simplex ∈ X1 has a left inverse, given by
Kan(2, 2)

X1 Λ2
2(X)×d1,X1,s X0 X2 ×d1,X1,s X0

∼
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Right Kan =⇒ Inverse

For the right inverse, consider the sequence of diagrams.



Kan we fill the
outer horns?

Introduction

Joyal Lifting
theorem

General setup

Right Kan
implies Kan

Facing the Face
maps.

17/30

Right Kan =⇒ Inverse

If we denote the higher simplex as T , then we have

T

Λ2
0(X)×d1,X1,s X0 X2 ×d1,X1,s X0

t d

f

Here f ◦ d = t is a cover, if we can show that d is a cover,
then this implies f is a cover.
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Right Kan =⇒ Kan

Case 1
For a right Kan simplicial object X, the left outer horn
Λ2
0 can be filled.
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Right Kan =⇒ Kan

Lemma[Joy02]

We have

(∂∆[m] ⋆∆[n]) ∪ (∆[m] ⋆ ∂∆[n]) = ∂∆[m+ n+ 1]

(Λk[m] ⋆∆[n]) ∪ (∆[m] ⋆ ∂∆[n]) = Λk∆[m+ n+ 1]

(∂∆[m] ⋆∆[n]) ∪ (∆[m] ⋆ Λk[n]) = Λm+1+k[m+ 1 + n]

Lemma[Li15]

Let f : A → B be right (or boundary) collapsible
extension and g : X → Y boundary (left collapsible)
extension of simplicial sets. Then the induced inclusion is
inner collapsible extension

A ⋆ Y
⋃
A⋆X

B ⋆ X → B ⋆ Y.
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Right Kan =⇒ Kan

Proof

▶ Fill the degenerate simplex ∆m{0, 1+, 2, . . . ,m}.
▶ When m > 2, Add another degenerate arrow

1++ ⇝ 1.

▶ Fill ∆2{0, 1, 1++} ⋆ ∂∆m−2{2, . . . ,m} and also
∆2{0, 1+, 1++} ⋆ ∂∆m−2{2, . . . ,m} by using
degenerate simplices.

▶ Use Kan(2, 2) on {1, 1+, 1++} to join 1+ → 1 and
also to get ∆2{1, 1+, 1++}.

▶ Applying Kan(3, 3) will give us ∆3{0, 1, 1+, 1++}.
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Right Kan =⇒ Kan

▶ Fill ∆2{1, 1+, 1++} ⋆ ∂∆m−2{2, . . . ,m} and also
∆3{0, 1, 1+, 1++} ⋆ ∂∆m−2{2, . . . ,m} using inner Kan
conditions.

▶ Finally fill Λm
1 {1, 1+, 2 . . . ,m} which will give the

missing face {1, 2, . . . ,m} and the inner horn
Λm+1
2 {0, 1, 1+, 2, . . . ,m} which will give us our

simplex ∆m{0, 1, 2, . . . ,m}
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Facing the Face maps.
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Joyal’s results

Definition
If A ⊆ [n], the generalised horn ΛA[n] is the simplicial
subset defined by ΛA[n] =

⋃
i/∈A ∂i∆[n].

Note that :

• Λ{k}[n] = Λk[n] for k ∈ [0, n].

• ΛA[n] = d0∆
n for A = [1, n].

Proposition[Joy02]

Let A ⊆ [n] be nonempty and iA : ΛA[n] ⊂ ∆[n] be the
inclusion.

▶ if A is proper subset, then iA is anodyne.

▶ if A ⊆ [0, n− 1], then iA is left anodyne;

▶ if A ⊆ [1, n], then iA is right anodyne;

▶ if Ac is not an interval, then iA is mid anodyne.
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Face maps are covers (almost)

Let X be a right fibrant object, put A = [1, n] ⊆ [n], then
iA : ΛA[n] = d0(∆[n]) → ∆[n] is right anodyne, thus
d0 : Xn → Xn−1 is a cover.

Using the same techniques in the proof of previous
proposition to work with topologically anodyne maps, we
can further show that di : Xn → Xn−1 is a cover for i ̸= n
whenever X is a right fibrant object.

WHAT ABOUT THE MAP dn : Xn → Xn−1?
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Modified (better ?) assumption

Fact
If g ◦ f is a surjective submersion and f is a surjection,
then g is a surjective submersion.

Assumption ⋆⋆

Let X
f−→ Y

g−→ Z be maps in a category C with a
Grothendieck pretopology T . If g ◦ f is a cover and f is
an epimorphism, then g is a cover.

All the examples mentioned before satisfy assumption ⋆⋆.

More Examples?

What about Fréchet manifolds ? Locally convex
manifolds? Diffeological spaces?
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Right Kan =⇒ Kan

Recall that we had a higher simplex T , a cover and the
face map

T

Λn
0 (X) Xn

t d

f

Here f ◦ d = t is a cover, d is surjective, hence an
epimorphism, then this implies f is a cover.

And thus we Kan fill the outer horns !
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Thank You!
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