Kalin Krishna

 $\mathbf{B-G-W}$ Retreat

10 June, 2023

Kan we fill the outer horns?

Introduction

Joyal Lifting theorem

General setup

Right Kan mplies Kan

Facing the Face maps.

<□ > < □ > < □ > < ■ > < ■ > < ■ > < ■ > ■ の へ ∩ 1/30

$\begin{array}{c} \mathbf{Kan} \text{ we fill the} \\ \text{outer horns?} \end{array}$

Introduction

Joyal Lifting theorem

General setup

Right Kan mplies Kan

Facing the Face maps.

Introduction

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = のへで 2/30

Introduction

Joyal Lifting theorem

General setup

Right Kan mplies Kan

Facing the Face maps.

- Joyal lifting theorem states that given an inner Kan fibration, one can fill *special* outer horns.
- One main corollary is that a Right Kan simplicial set is Kan simplicial.
- Our objective is to generalize this result to an arbitrary category with a Grothendieck pretopology.

<□> <@> < E> < E> E のへの 3/30

Introduction

Joyal Lifting theorem

General setup

Right Kan mplies Kan

Facing the Face maps.

Assume Right Kan conditions imply Kan conditions.

Let $M \xrightarrow{\chi} \Delta^1$ be a right Kan fibration, between any two simplicial object in the category $(\mathcal{C}, \mathcal{T})$, then both the end points $\chi^{-1}\{0\}$ and $\chi^{-1}\{1\}$ are right Kan fibrant and hence by the assumption ∞ -groupoids.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction

Joyal Lifting theorem

General setup

Right Kan mplies Kan

Facing the Face maps.

Joyal Lifting theorem

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ E のへで 5/30

Theorem

Let $p: X \to Y$ be an inner fibration between ∞ -categories and $f \in X$ such that p(f) is an isomorphism in Y. Then TFAE:

 \blacktriangleright f is an isomorphism in X.

• For all $n \ge 2$, there is a lift for the diagram

$$\begin{array}{ccc} \Lambda_0^n & \stackrel{h}{\longrightarrow} X \\ \downarrow & & \stackrel{\gamma}{\downarrow} \\ \Delta^n & \longrightarrow Y \end{array}$$

where $h|_{\Delta^1\{0,1\}}$ is f.

Kan we fill the outer horns?

Introduction

Joyal Lifting theorem

General setup

Right Kan mplies Kan

```
< □ > < @ > < Ξ > < Ξ > Ξ の < ⊙ 6/30
```

A left outer horn $x:\Lambda_0^n\to X$ is called special if $x|_{\Delta^1_{\{0,1\}}}$ is invertible.

Kan we fill the outer horns?

ntroduction

Joyal Lifting theorem

General setup

Right Kan mplies Kan

Facing the Face maps.

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ■ のへで 7/30

A left outer horn $x:\Lambda_0^n\to X$ is called special if $x|_{\Delta^1_{\{0,1\}}}$ is invertible.

Theorem ([Joy02])

Let X be an ∞ -category. Then every special outer horn $x: \Lambda_0^n \to X$ can be filled.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Kan we fill the outer horns?

Introduction

Joyal Lifting theorem

General setup

Right Kan mplies Kan

A left outer horn $x:\Lambda_0^n\to X$ is called special if $x|_{\Delta^1_{\{0,1\}}}$ is invertible.

Theorem ([Joy02])

Let X be an ∞ -category. Then every special outer horn $x: \Lambda_0^n \to X$ can be filled.

Corollary

An ∞ -category X is Kan complex iff its fundamental category $\operatorname{cat}(X)$ is a groupoid.

Kan we fill the outer horns?

Introduction

Joyal Lifting theorem

General setup

Right Kan mplies Kan

Characterization of Kan complex

Theorem (Joyal)

Let X be a simplicial set, the following are equivalent:

< □ > < @ > < Ξ > < Ξ > Ξ - のへで 8/30

- 1. X is a Kan complex.
- 2. $X \to \mathbb{1}$ is right fibrant.
- 3. $X \to \mathbb{1}$ is left fibrant.

Kan we fill the outer horns?

Introduction

Joyal Lifting theorem

General setup

Right Kan mplies Kan

Characterization of Kan complex

Theorem (Joyal)

Let X be a simplicial set, the following are equivalent:

- 1. X is a Kan complex.
- 2. $X \to \mathbb{1}$ is right fibrant.
- 3. $X \to \mathbb{1}$ is left fibrant.

$\operatorname{Proof}(2) \implies (1)$

 $X \to \mathbb{1}$ is right fibration $\implies X \to \mathbb{1}$ is conservative $\implies \mathbf{cat}(X) \to \mathbf{cat}(\mathbb{1})$ is conservative $\implies \mathbf{cat}(X)$ is a groupoid $\implies X$ is Kan. Kan we fill the outer horns?

Introduction

Joyal Lifting theorem

General setup

Right Kan mplies Kan

$\begin{array}{c} \mathbf{Kan} \text{ we fill the} \\ \text{outer horns?} \end{array}$

Introduction

Joyal Lifting theorem

General setup

Right Kan implies Kan

Facing the Face maps.

General setup

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ E ∽ Q ↔ 9/30

We denote our category $(\mathcal{C}, \mathcal{T})$, where \mathcal{C} is an extensive category and \mathcal{T} is a Grothendieck pretopology satisfying assumptions

▶ All finite products and finite coproducts exists in C.

< □ > < □ > < □ > < Ξ > < Ξ > Ξ の < 0 10/30

- ▶ All idempotents in C split.
- the pretopology \mathcal{T} is retract stable.

With these assumptions, $(\mathcal{C}, \mathcal{T})$ is called a **Good** geometric category.

Kan we fill the outer horns?

Introduction

Joyal Lifting theorem

General setup

Right Kan mplies Kan

We denote our category $(\mathcal{C}, \mathcal{T})$, where \mathcal{C} is an extensive category and \mathcal{T} is a Grothendieck pretopology satisfying assumptions

- \blacktriangleright All finite products and finite coproducts exists in $\mathcal{C}.$
- ▶ All idempotents in C split.
- the pretopology \mathcal{T} is retract stable.

With these assumptions, $(\mathcal{C}, \mathcal{T})$ is called a **Good** geometric category.

Assumption \star [MZ15]

If $X \xrightarrow{f} Y \xrightarrow{g} Z$ are maps such that $g \circ f$, and f is a cover, then g is a cover.

Kan we fill the outer horns?

Introduction

Joyal Lifting theorem

General setup

Right Kan implies Kan

The following are examples of Good Geometric categories which even satisfies assumption \star :

- ► *Sets* with surjective submersions.
- ► *Top* with maps having global (local) continuous sections.
- ► *Top* with proper surjections.
- \blacktriangleright Top with open (or even etale) surjections.
- $Mfld_{fin}$ with surjective submersions.
- $Mfld_{Ban}$ with surjective submersions.
- $Mfld_{Hil}$ with surjective submersions.

Kan we fill the outer horns?

Introduction

Joyal Lifting theorem

General setup

Right Kan mplies Kan

On a category C, with Grothendieck pretopology \mathcal{T} , we say map between simplicial objects $X \to Y$ satisfies $\mathbf{Kan}(n, j)$ [or $\mathbf{Kan!}(n, j)$] if the natural map below is a cover[or an isomorphism].

$$X_n = \hom(\Delta^n, X) \to \hom(\Lambda_j^n \to \Delta^n, X \to Y)$$

< □ > < □ > < □ > < Ξ > < Ξ > Ξ の ペ 12/30

Kan we fill the outer horns?

Introduction

Joyal Lifting theorem

General setup

Right Kan mplies Kan

On a category C, with Grothendieck pretopology \mathcal{T} , we say map between simplicial objects $X \to Y$ satisfies $\mathbf{Kan}(n, j)$ [or $\mathbf{Kan!}(n, j)$] if the natural map below is a cover[or an isomorphism].

$$X_n = \hom(\Delta^n, X) \to \hom(\Lambda_j^n \to \Delta^n, X \to Y)$$

- A simplicial object X is called left(right, or Kan) fibrant if the map X → 1 satisfies Kan(n, j) for 0 ≤ j < n (0 < j ≤ n, or 0 ≤ j ≤ n)
- \blacktriangleright ∞-groupoids are Kan fibrant.

Kan we fill the outer horns?

Introduction

Joyal Lifting theorem

General setup

Right Kan mplies Kan

Following the approach of Lurie, defining correspondence between simplicial sets, we define

Definition

Let G, H be two ∞ - groupoids in $(\mathcal{C}, \mathcal{T})$. A G - Hbibundle is an inner Kan fibration $M \xrightarrow{\chi} \Delta^1$ with source $\chi^{-1}(0) = G$ and $\chi^{-1}(1) = H$.

< □ > < □ > < □ > < Ξ > < Ξ > Ξ の Q 13/30

Kan we fill the outer horns?

Introduction

Joyal Lifting heorem

General setup

Right Kan implies Kan

Following the approach of Lurie, defining correspondence between simplicial sets, we define

Definition

Let G, H be two ∞ - groupoids in $(\mathcal{C}, \mathcal{T})$. A G - Hbibundle is an inner Kan fibration $M \xrightarrow{\chi} \Delta^1$ with source $\chi^{-1}(0) = G$ and $\chi^{-1}(1) = H$.

Remark

Since we are dealing with groupoids, we also need certain extra outer Kan conditions as defined by [Li15]. But with the added assumption on the cover, Li showed that these special outer horns can be automatically filled. Kan we fill the outer horns?

Introduction

Joyal Lifting heorem

General setup

Right Kan implies Kan

$\begin{array}{c} \mathbf{Kan} \text{ we fill the} \\ \text{outer horns?} \end{array}$

Introduction

Joyal Lifting theorem

General setup

Right Kan implies Kan

Facing the Face maps.

Right Kan implies Kan

◆□ → < ■ → < ■ → < ■ → < ■ → < ■ < ○ < 14/30</p>

Let X be a simplicial object in $(\mathcal{C}, \mathcal{T})$. Assume X is right Kan, that is $X \to \mathbf{1}$ is right Kan fibration. Then, Any arrow or 1-simplex $\in X_1$ has a left inverse, given by Kan(2,2)

$$X_1 \xleftarrow{\sim} \Lambda_2^2(X) \times_{d_1, X_1, s} X_0 \xleftarrow{\sim} X_2 \times_{d_1, X_1, s} X_0$$

Kan we fill the outer horns?

Introduction

Joyal Lifting theorem

General setup

Right Kan implies Kan

Facing the Face maps.

< □ > < □ > < □ > < Ξ > < Ξ > Ξ の Q 15/30

Right Kan \implies Inverse

For the right inverse, consider the sequence of diagrams.

Kan we fill the outer horns?

Introduction

Joyal Lifting theorem

General setup

Right Kan implies Kan

Facing the Face maps.

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ■ りへで 16/30

If we denote the higher simplex as T, then we have

Here $f \circ d = t$ is a cover, if we can show that d is a cover, then this implies f is a cover.

Kan we fill the outer horns?

Introduction

Joyal Lifting theorem

General setup

Right Kan implies Kan

Facing the Face maps.

< □ > < □ > < □ > < Ξ > < Ξ > Ξ の ペ 17/30

Case 1

For a right Kan simplicial object X, the left outer horn Λ_0^2 can be filled.

Kan we fill the outer horns?

Introduction

Joyal Lifting theorem

General setup

Right Kan implies Kan

Facing the Face maps.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Lemma[Joy02]

We have

$$\begin{split} (\partial \Delta[m] \star \Delta[n]) \cup (\Delta[m] \star \partial \Delta[n]) &= \partial \Delta[m+n+1] \\ (\Lambda^k[m] \star \Delta[n]) \cup (\Delta[m] \star \partial \Delta[n]) &= \Lambda^k \Delta[m+n+1] \\ (\partial \Delta[m] \star \Delta[n]) \cup (\Delta[m] \star \Lambda^k[n]) &= \Lambda^{m+1+k}[m+1+n] \end{split}$$

< □ > < □ > < □ > < Ξ > < Ξ > < Ξ > Ξ の Q · 19/30

Kan we fill the outer horns?

Introduction

Joyal Lifting theorem

General setup

Right Kan implies Kan

Lemma[Joy02]

We have

$$\begin{split} (\partial \Delta[m] \star \Delta[n]) \cup (\Delta[m] \star \partial \Delta[n]) &= \partial \Delta[m+n+1] \\ (\Lambda^k[m] \star \Delta[n]) \cup (\Delta[m] \star \partial \Delta[n]) &= \Lambda^k \Delta[m+n+1] \\ (\partial \Delta[m] \star \Delta[n]) \cup (\Delta[m] \star \Lambda^k[n]) &= \Lambda^{m+1+k}[m+1+n] \end{split}$$

Lemma[Li15]

Let $f: A \to B$ be right (or boundary) collapsible extension and $g: X \to Y$ boundary (left collapsible) extension of simplicial sets. Then the induced inclusion is inner collapsible extension

$$A \star Y \bigcup_{A \star X} B \star X \to B \star Y.$$

Kan we fill the outer horns?

Introduction

Joyal Lifting theorem

General setup

Right Kan implies Kan

Right Kan \implies Kan

Proof

- Fill the degenerate simplex $\Delta^m \{0, 1^+, 2, \dots, m\}$.
- When m > 2, Add another degenerate arrow $1^{++} \rightsquigarrow 1$.
- Fill $\Delta^2\{0, 1, 1^{++}\} \star \partial \Delta^{m-2}\{2, \dots, m\}$ and also $\Delta^2\{0, 1^+, 1^{++}\} \star \partial \Delta^{m-2}\{2, \dots, m\}$ by using degenerate simplices.
- Use Kan(2,2) on $\{1,1^+,1^{++}\}$ to join $1^+ \to 1$ and also to get $\Delta^2\{1,1^+,1^{++}\}$.
- Applying Kan(3,3) will give us $\Delta^3\{0,1,1^+,1^{++}\}$.

<□ > < □ > < □ > < Ξ > < Ξ > Ξ の Q 20/30

Kan we fill the outer horns?

Introduction

Joyal Lifting heorem

General setup

Right Kan implies Kan

- Fill $\Delta^2\{1, 1^+, 1^{++}\} \star \partial \Delta^{m-2}\{2, \dots, m\}$ and also $\Delta^3\{0, 1, 1^+, 1^{++}\} \star \partial \Delta^{m-2}\{2, \dots, m\}$ using inner Kan conditions.
 - Finally fill Λ₁^m{1, 1⁺, 2..., m} which will give the missing face {1, 2, ..., m} and the inner horn Λ₂^{m+1}{0, 1, 1⁺, 2, ..., m} which will give us our simplex Δ^m{0, 1, 2, ..., m}

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ■ ⑦ Q @ 21/30

Introduction

Joyal Lifting theorem

General setup

Right Kan implies Kan

$\begin{array}{c} \mathbf{Kan} \text{ we fill the} \\ \text{outer horns?} \end{array}$

Introduction

Joyal Lifting theorem

General setup

Right Kan mplies Kan

Facing the Face maps.

Facing the Face maps.

◆□ → < 置 → < 置 → < 置 → < 置 → < 22/30</p>

Definition

If $A \subseteq [n]$, the generalised horn $\Lambda^A[n]$ is the simplicial subset defined by $\Lambda^A[n] = \bigcup_{i \notin A} \partial_i \Delta[n]$.

< □ > < □ > < □ > < Ξ > < Ξ > Ξ の Q 23/30

Note that :

•
$$\Lambda^{\{k\}}[n] = \Lambda^k[n]$$
 for $k \in [0, n]$.

•
$$\Lambda^A[n] = d_0 \Delta^n$$
 for $A = [1, n]$.

Kan we fill the outer horns?

Introduction

Joyal Lifting theorem

General setup

Right Kan mplies Kan

Definition

If $A \subseteq [n]$, the generalised horn $\Lambda^A[n]$ is the simplicial subset defined by $\Lambda^A[n] = \bigcup_{i \notin A} \partial_i \Delta[n]$.

Note that :

•
$$\Lambda^{\{k\}}[n] = \Lambda^k[n]$$
 for $k \in [0, n]$.

•
$$\Lambda^A[n] = d_0 \Delta^n$$
 for $A = [1, n]$.

Proposition[Joy02]

Let $A \subseteq [n]$ be nonempty and $i_A : \Lambda^A[n] \subset \Delta[n]$ be the inclusion.

- if A is proper subset, then i_A is anodyne.
- if $A \subseteq [0, n-1]$, then i_A is left anodyne;
- ▶ if $A \subseteq [1, n]$, then i_A is right anodyne;
- ▶ if A^c is not an interval, then i_A is mid anodyne.

Kan we fill the outer horns?

Introduction

Joyal Lifting theorem

General setup

Right Kan mplies Kan

Let X be a right fibrant object, put $A = [1, n] \subseteq [n]$, then $i_A : \Lambda^A[n] = d_0(\Delta[n]) \to \Delta[n]$ is right anodyne, thus $d_0 : X_n \to X_{n-1}$ is a cover.

< □ > < □ > < □ > < Ξ > < Ξ > Ξ の Q 24/30

Kan we fill the outer horns?

Introduction

Joyal Lifting heorem

General setup

Right Kan mplies Kan

Let X be a right fibrant object, put $A = [1, n] \subseteq [n]$, then $i_A : \Lambda^A[n] = d_0(\Delta[n]) \to \Delta[n]$ is right anodyne, thus $d_0 : X_n \to X_{n-1}$ is a cover.

Using the same techniques in the proof of previous proposition to work with topologically anodyne maps, we can further show that $d_i: X_n \to X_{n-1}$ is a cover for $i \neq n$ whenever X is a right fibrant object.

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ■ 9 Q @ 24/30

Kan we fill the outer horns?

Introduction

Joyal Lifting Sheorem

General setup

Right Kan mplies Kan

Let X be a right fibrant object, put $A = [1, n] \subseteq [n]$, then $i_A : \Lambda^A[n] = d_0(\Delta[n]) \to \Delta[n]$ is right anodyne, thus $d_0 : X_n \to X_{n-1}$ is a cover.

Using the same techniques in the proof of previous proposition to work with topologically anodyne maps, we can further show that $d_i: X_n \to X_{n-1}$ is a cover for $i \neq n$ whenever X is a right fibrant object.

WHAT ABOUT THE MAP $d_n : X_n \to X_{n-1}$?

Kan we fill the outer horns?

Introduction

Joyal Lifting Sheorem

General setup

Right Kan mplies Kan

Facing the Face maps.

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ■ 9 Q @ 24/30

Modified (better ?) assumption

Fact

If $g \circ f$ is a surjective submersion and f is a surjection, then g is a surjective submersion.

< □ > < □ > < □ > < Ξ > < Ξ > Ξ の Q 25/30

Kan we fill the outer horns?

Introduction

Joyal Lifting theorem

General setup

Right Kan mplies Kan

Fact

If $g \circ f$ is a surjective submersion and f is a surjection, then g is a surjective submersion.

Assumption $\star\star$

Let $X \xrightarrow{f} Y \xrightarrow{g} Z$ be maps in a category \mathcal{C} with a Grothendieck pretopology \mathcal{T} . If $g \circ f$ is a cover and f is an epimorphism, then g is a cover.

All the examples mentioned before satisfy assumption $\star\star.$

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ■ ⑦ Q @ 25/30

Kan we fill the outer horns?

Introduction

Joyal Lifting theorem

General setup

Right Kan mplies Kan

Fact

If $g \circ f$ is a surjective submersion and f is a surjection, then g is a surjective submersion.

Assumption $\star\star$

Let $X \xrightarrow{f} Y \xrightarrow{g} Z$ be maps in a category \mathcal{C} with a Grothendieck pretopology \mathcal{T} . If $g \circ f$ is a cover and f is an epimorphism, then g is a cover.

All the examples mentioned before satisfy assumption $\star\star.$

More Examples?

What about Fréchet manifolds ? Locally convex manifolds? Diffeological spaces?

Kan we fill the outer horns?

Introduction

Joyal Lifting theorem

General setup

Right Kan mplies Kan

Recall that we had a higher simplex T, a cover and the face map

< □ > < □ > < □ > < Ξ > < Ξ > Ξ の Q 26/30

Here $f \circ d = t$ is a cover, d is surjective, hence an epimorphism, then this implies f is a cover.

Kan we fill the outer horns?

Introduction

Joyal Lifting theorem

General setup

Right Kan mplies Kan

Recall that we had a higher simplex T, a cover and the face map

< □ > < □ > < □ > < Ξ > < Ξ > Ξ の Q 26/30

Here $f \circ d = t$ is a cover, d is surjective, hence an epimorphism, then this implies f is a cover. And thus we *Kan* fill the outer horns !

Kan we fill the outer horns?

Introduction

Joyal Lifting Sheorem

General setup

Right Kan mplies Kan

$\begin{array}{c} \mathbf{Kan} \text{ we fill the} \\ \text{outer horns?} \end{array}$

Introduction

Joyal Lifting theorem

General setup

Right Kan implies Kan

Facing the Face maps.

Thank You!

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < ○ < ○ 27/30

- A. Joyal, *Quasi-categories and kan complexes*, Journal of Pure and Applied Algebra **175** (2002), no. 1, 207–222.
- Du Li, *Higher groupoid actions, bibundles, and differentiation*, Ph.D. thesis, University of Göttingen, 2015.
- Ralf Meyer and Chenchang Zhu, Groupoids in categories with pretopology, Theory and Applications of Categories 30 (2015), no. 55, 1906–1998.
- C. Zhu, n-groupoids and stacky groupoids, International Mathematics Research Notices (2009).

Introduction

Joyal Lifting heorem

General setup

Right Kan mplies Kan

Introduction

Joyal Lifting theorem

General setup

Right Kan mplies Kan

Facing the Face maps.

< □ > < 母 > < 壹 > < 壹 > < Ξ > ○ Q (29/30

Introduction

Joyal Lifting theorem

General setup

Right Kan mplies Kan

Facing the Face maps.

< □ > < □ > < □ > < Ξ > < Ξ > Ξ のへの 30/30