Higher groupoids, actions and bibundles

Kalin Krishna

RTG 2491 retreat Georg-August-Universität Göttingen

29 October 2022

Higher groupoids, actions and bibundles

Overview

Introduction Groupoids Kan conditions

n-groupoids Pretopology n-groupoids in C

Outline

Overview

Introduction

Groupoids Kan conditions

n-groupoids

 $\begin{array}{l} {\rm Pretopology} \\ {\it n}\text{-groupoids in } \mathcal{C} \end{array}$

Groupoid actions

Bibundles Higher actions Higher groupoids, actions and bibundles

) ver vi e w

Introduction Groupoids Kan conditions

n-groupoids

Pretopology n-groupoids in C

Groupoid actions Bibundles

Overview

Higher groupoids, actions and bibundles

Overview

Introduction Groupoids Kan conditions

n-groupoids Pretopology

n-groupoids in C

Groupoid actions

Background

- Higher groupoids play a crucial role in the active research in the interplay between higher category theory and different other fields within mathematics.
- Higher Lie groupoids acts as charts for differentiable stacks.
- [RZ20] built a higher category where these higher Lie groupoids can live in, and the morphisms are zig-zag morphisms with weak equivalence conditions imposed.
- [Li15] worked out some details of 2-groupoid actions, bibundles, and principal bundles, and gave correspondence to actions of categorified groupoids.

Higher groupoids, actions and bibundles

Overview

Introduction Groupoids Kan conditions

n-groupoids Pretopology n-groupoids in C

- To study the work of [Li15] on higher groupoid actions, bibundles, and principal bundles, and generalize these notions and work out the details for an n- groupoids in general higher category.
- To explore the works in [RZ20] and to construct a higher category to host the general higher *n*-groupoids.

Higher groupoids, actions and bibundles

Overview

Introduction Groupoids Kan conditions

n-groupoids Pretopology n-groupoids in C

Introduction

Higher groupoids, actions and bibundles

Overview

Introduction Groupoids Kan conditions

n-groupoids

Pretopology n-groupoids in C

Groupoid actions

Category

Definition

A Category ${\bf C}$ consists of the following data:

- A collection C_0 of objects.
- A collection C_1 of morphisms.
- ▶ Maps $s, t : C_1 \rightarrow C_0$ called source and target map resp.

$$\blacktriangleright \text{ A map } \mathbb{1} : \ \mathcal{C}_0 \ {\rightarrow} \mathrm{C}_1 \ (X \mapsto \mathbb{1}_X \)$$

• If $f, g \in C_1$ such that s(f) = t(g) then a morphism $f \circ g$ with $s(f \circ g) = s(g)$; $t(f \circ g) = t(f)$

Satisfying the given conditions:

- 1. Unit laws: for every $f: A \to B, f \circ \mathbb{1}_A = f = \mathbb{1}_B \circ f$
- 2. Assosiative law: for every $f: A \to B$, $g: B \to C$ and $h: C \to D$, $h \circ (g \circ f) = (h \circ g) \circ f$

Higher groupoids, actions and bibundles

) ver vi e w

Introduction

Groupoids Kan conditions

n-groupoids

Pretopology n-groupoids in C

Groupoid actions

A groupoid is a category where all the morphisms are invertible.

Examples

- A group G is a groupoid with a single object.
- ► Any equivalence relation is a groupoid.
- Fundamental groupoid of a topological space.

Higher groupoids, actions and bibundles

) ver vi e w

Introduction

Groupoids Kan conditions

n-groupoids

Pretopology n-groupoids in C

Groupoid actions

A Lie groupoid is a groupoid where both G_0 and G_1 are smooth manifolds, and all the structure maps (source, target, identity, inverse, composition) are smooth. We also require the source and target maps $s, t : G_1 \rightrightarrows G_0$ to be submersions. Higher groupoids, actions and bibundles

Overview

Introduction

Groupoids Kan conditions

n-groupoids

Pretopology n-groupoids in C

Simplicial picture

Notations

Let Δ^n denote the simplicial *n*-simplex and the horn Λ^n_k $(\Lambda[n, k])$ is the simplicial subset of Δ^n defined by

 $[m]\mapsto \{f\in \operatorname{hom}([m],[n])\mid [n]-[k]
ot\subseteq f[m]\}$

Remark

If you consider the points as objects and the arrows as morphisms in a category, we can see that $\Lambda[2, 1]$ gives a pair of composable maps.

Higher groupoids, actions and bibundles

Dverview

Introduction Groupoids Kan conditions

n-groupoids Pretopology n-groupoids in C

Motivated by the above remark, we make the following definition

Definition

We say the simplicial set X satisfy Kan(m, j) if any map from the horn Λ_j^m to X extends to a map from Δ^m to X. A Kan simplicial set is a simplicial set X which satisfies Kan(m, j) for all m and $j \leq m$.

If the extension associated to Kan(m, j) is unique, then we denote it as Kan!(m, j). Higher groupoids, actions and bibundles

O vervie w

Introduction Groupoids Kan conditions

n-groupoids Pretopology n-groupoids in C

Overview

Introduction Groupoids Kan conditions

Higher groupoids, actions and bibundles

n-groupoids

Pretopology n-groupoids in C

Groupoid actions Bibundles

Higher actions

n-groupoids

An *n*-groupoid X is a simplicial set which satisfies Kan(m, j) for all $0 \le j \le m$, $m \ge 1$ and also satisfies Kan!(m, j) for all $0 \le j \le m$, m > n

▶ The nerve of a groupoid is a 1- groupoid.

Higher groupoids, actions and bibundles

) ver vi e w

Introduction Groupoids Kan conditions

n-groupoids

Pretopology n-groupoids in C

Groupoid actions

Singleton Grothendieck Pretopolgy

A collection of morphisms \mathcal{T} is called a singleton Grothendieck pretopolgy in \mathcal{C} if

- every isomorphisms in C is in T.
- the pullback of every morphism in T exists and is in T.
- if $f, g \in \mathcal{T}$ are composable, then $f \circ g \in \mathcal{T}$. Morphisms in \mathcal{T} are called covers in \mathcal{C} .

Examples

- Category of smooth manifolds with surjective submersions.
- Category of topological spaces with surjective etale maps.

Higher groupoids, actions and bibundles

) Verview

Introduction Groupoids Kan conditions

n-groupoids Pretopology n-groupoids in C

Groupoid actions Bibundles

In the setup of category with a singleton grothendieck pretopology, we modify our Kan conditions as given:

Kan(m,j): The map $hom(\Delta m, X) \to hom(\Lambda_j^m, X)$ is a cover in $(\mathcal{C}, \mathcal{T})$. Kan!(m,j): The map $hom(\Delta m, X) \to hom(\Lambda_j^m, X)$ is an isomorphism in \mathcal{C} .

Replacing the horn Λ_j^m with the boundary $\partial \Delta^m$, we obtain the Acyclic conditions Acyc(m).

Higher groupoids, actions and bibundles

) ver vi e w

Introduction Groupoids Kan conditions

n-groupoids

Pretopology n-groupoids in C

```
Groupoid
actions
Bibundles
Higher actions
```

An *n*-groupoid object X $(n \in \mathbb{N} \cup \infty)$ is a simplicial object in $(\mathcal{C}, \mathcal{T})$ which satisfies Kan(m, j) for all $0 \leq j \leq m, m \geq 1$ and Kan!(m, j) $0 \leq j \leq m, m > n$

A Lie groupoid is a Lie 1- groupoid in the category (Mfld, T) where covers are surjective submersions. Higher groupoids, actions and bibundles

) ver vi e w

Introduction Groupoids Kan conditions

n-groupoids Pretopology n-groupoids in C

```
Groupoid
actions
Bibundles
Higher actions
```

Kan fibrations

Let $f: X \to Y$ be a morphism of simplicial objects in $(\mathcal{C}, \mathcal{T})$. We say f satisfies $\operatorname{Kan}(n, j)$ [or $\operatorname{Kan}!(n, j)$] if the presheaf $\operatorname{hom}(\Lambda_j^n \to \Delta^n, X \to Y)$ is representable and the natural map below is a cover[or an isomorphism].

$$X_n = \hom(\Delta^n, X) \to \hom(\Lambda_j^n \to \Delta^n, X \to Y)$$

- ▶ f is a Kan fibration if it satisfies Kan(n, j), $\forall m \ge 1, 0 \le j \le m$.
- ▶ X satisfies $\mathbf{Kan}(n, j)$, iff $f : X \to \mathbb{1}$ satisifes $\mathbf{Kan}(n, j)$.

Higher groupoids, actions and bibundles

Overview

Introduction Groupoids Kan conditions

n-groupoids Pretopology n-groupoids in C

Let X, Y be n-groupoid objects in $(\mathcal{C}, \mathcal{T})$. A morphism between the n-groupoids $f : X \to Y$ is called an n-groupoid Kan fibration if f is a Kan fibration and furthermore the unique Kan conditions Kan!(n, k) for $0 \le k \le n$ are satisfied. Higher groupoids, actions and bibundles

O ver vi e w

Introduction Groupoids Kan conditions

n-groupoids Pretopology n-groupoids in C

Groupoid actions

Higher groupoids, actions and bibundles

O ver vi e w

Introduction Groupoids Kan conditions

n-groupoids

Pretopology n-groupoids in C

Groupoid actions

Unlike group actions, in the case of groupoids, we need to specify which groupoid elements can act on a particular element in the set.

Definition

Let $G_1 \rightrightarrows G_0$ be a groupoid and X be a object in C. A right G-action, on X is given by two maps, the anchor map $J: X \to G_0$ and a map $\mu: X \times_{G_0} G_1 \to X$, defined on pairs (x, g) such that J(x) = t(g), written as $\mu(x, g) = x.g$ subject to the following conditions:

 $\begin{array}{ll} \blacktriangleright \ J(x.g) = s(g), & x \in G_0, g \in G_1 \\ \blacktriangleright \ x.\mathbb{1}_{J(x)} = x, & x \in G_0 \\ \blacktriangleright \ (x.g).h = x.(gh), & g,h \in G_1, s(g) = t(h) \end{array}$

Higher groupoids, actions and bibundles

) ver vi e w

Introduction Groupoids Kan conditions

n-groupoids

Pretopology n-groupoids in C

Groupoid actions Bibundles

Higher actions

Principal groupoid bundles

Definition

A right G-bundle over a manifold M is a manifold P with a right G action and invariant map $\kappa: P \to M$.

P is principal if

- \blacktriangleright κ is a surjective submersion.
- ▶ the map $(pr_1, \mu) : P \times_{G_0, t} G_1 \to P \times_M P$, sending $(p, g) \mapsto (p, pg)$ is a diffeomorphism.

Higher groupoids, actions and bibundles

) ver vi e w

Introduction Groupoids Kan conditions

n-groupoids

Pretopology n-groupoids in C

Groupoid actions

Let G and H be two Lie groupoids. A G - H bibundle is a manifold having two bundle structures such that the corresponding actions commute. There is a right H-bundle structure and also a left G-bundle structure that commutes.

Higher groupoids, actions and bibundles

O ver vie w

Introduction Groupoids Kan conditions

n-groupoids Pretopology n-groupoids in C

Groupoid actions

A Hilsum-Skandalis bibundle is a bibundle P between G and H such that the right H action is principal.

- Given any groupoid map, $f : G \to H$, one can create an *HS* bibundle.
- HS maps give a good generalization of maps between Lie groupoids.
- If in addition, P is also a left principal G bundle, we say G and H are Morita equivalent.

Higher groupoids, actions and bibundles

O ver vi e w

Introduction Groupoids Kan conditions

n-groupoids Pretopology n-groupoids in C

Groupoid actions

- The category of principal G-bundles of a Lie groupoid is a differentiable stack.
- ► It has been shown that there exists a 1-1 correspondence between 'Morita equivalent' Lie groupoids and differentiable stacks[BX06].
- Later on, it was proved that the 2 generalizations of Lie groupoids, namely stacky Lie groupoids, and Lie-2- groupoids are in a 1-1 correspondence [Zhu09].

Higher groupoids, actions and bibundles

O ver vi e w

Introduction Groupoids Kan conditions

n-groupoids Pretopology n-groupoids in C

Groupoid actions

If the Lie groupoid $G_1 \rightrightarrows G_0$ acts on a manifold E, one can create the action groupoid A such that

$$A_0:=E$$
 ; $A_1:=E imes_{G_0,t}G_1$

and there exists a natural projection $\pi: A \to G$.

Remark

The map $\pi: A \to G$ is a 1- groupoid Kan fibration.

Higher groupoids, actions and bibundles

Overview

Introduction Groupoids Kan conditions

n-groupoids Pretopology n-groupoids in C

The action of an *n*-groupoid object G in $(\mathcal{C}, \mathcal{T})$ is an *n*-groupoid Kan fibration $\pi : A \to G$.

Definition

Let $\pi: A \to G$ be an *n*-groupoid Kan fibration, giving an action of G on $Fib(\pi)$. Let N be an object in C with a map $\kappa: A \to sk_0(N)$. We call $Fib(\pi)$, a G-bundle over N. If in addition, if κ is acyclic, we call $Fib(\pi)$ a principal G-bundle over N.

Higher groupoids, actions and bibundles

) verview

Introduction Groupoids Kan conditions

n-groupoids Pretopology n-groupoids in C

- [Li15] has worked out the details of actions, principal bundles and bibundles in the case of 2-groupoids.
- A finite data description of Kan fibrations was also given.
- One of our objectives is to work out the details of a bibundle for a general n-groupoid and finitely describe n-groupoid Kan fibrations.

Higher groupoids, actions and bibundles

Overview

Introduction Groupoids Kan conditions

n-groupoids Pretopology n-groupoids in C

References I

- Kai Behrend and Ping Xu, *Differentiable stacks and gerbes*, Journal of Symplectic Geometry 9 (2006).
- Du Li, Higher groupoid actions, bibundles, and differentiation, Ph.D. thesis, Georg-August University, Göttingen, 2015.
- Christopher L. Rogers and Chenchang Zhu, On the homotopy theory for lie ∞-groupoids, with an application to integrating l ∞-algebras, Algebraic & Geometric Topology 20 (2020), 1127-1219.
- C. Zhu, n-groupoids and stacky groupoids, International Mathematics Research Notices (2009).

Higher groupoids, actions and bibundles

) ver vi e w

Introduction Groupoids Kan conditions

n-groupoids Pretopology n-groupoids in C

Thank You!

Higher groupoids, actions and bibundles

Overview

Introduction Groupoids Kan conditions

n-groupoids Pretopology

n-groupoids in C